什么是购物篮分析?购物篮分析,最早是为了发现超市销售数据库中不同商品之间的关联关系。大家经常听到的啤酒与尿不湿的案例就是购物篮分析的一个经典案例。购物篮分析的目的在于,通过对用户消费记录数据的挖掘和分析,找出用户购买习惯的一些潜在规律,从而可以为用户提供他们想要的搭配或套餐。套餐销量的提升一般会带来客单价的提升,从而可以提高公司收益。 怎么做购物篮分析?做购物篮分析一般以订单(购物小票)为视角,即分析一次购买行为中同时购买商品A与商品B的关联性。通俗地说,也就是用户购买商品A的行为,是否会对其购买商品B产生影响? 购物篮分析的关键衡量指标有3个:支持度、置信度、提升度。要计算这3个指标,需要4个基础指标:商品A的订单数、商品B的订单数、商品组合的订单数、总订单数。 以下表格是对这7个指标的解释:
观远BI平台落地购物篮分析在观远BI平台上做购物篮分析,可以通过创建卡片做即席分析,也可以使用Smart ETL工具对订单数据做处理后再做购物篮分析。在卡片上做的购物篮分析方案是尝试验证性的计算,并且计算复杂较占用系统资源,因此推荐在Smart ETL中做计算。案例数据4万多行,使用Smart ETL工具3秒中就运算完成了。本次内容和大家分享如何使用Smart ETL工具做购物篮分析,若有需要了解在卡片上的解决方案,可以访问观远云应用市场上的案例库。 在使用Smart ETL工具对订单数据做处理后再做可视化的展示,可以得到如下的分析结果: 接着让我们看一下在观远BI平台做购物篮分析的步骤: 首先,我们使用的数据源为最常见的包含日期、门店、商品、订单号的消费流水数据。 然后,我们使用这份消费流水数据作为输入数据源,在ETL中做数据的处理。整个ETL的操作步骤不算复杂,过程如下图所示: 计算逻辑推导在动手开发ETL前,我们需要先梳理一下计算逻辑。其实做购物篮分析的4个基础指标:商品A的订单数、商品B的订单数、商品组合的订单数、总订单数,只有商品组合的订单数这1个基础指标是比较难算的,是做购物篮分析的难点所在。 我们可以用一份简单的数据来推导下该怎么计算商品组合的订单数。例如下表,我们最终需要计算出每个商品组合有多少个订单数。
那往回倒推一步,我们要先算出每个订单都有哪些商品组合。例如下表所示:
所以计算商品组合的订单数这个指标的关键是要穷举出每个订单有哪些商品组合。穷举的过程其实类似于我们高中时候学的排列组合问题。 以上表中的订单4为例,一共有A,B,C,D 4件商品。
通过这份简单数据的逻辑推导,我们把一个看似复杂的计算商品组合的问题回归到了先排列再去重的计算组合的数学问题。穷举了两两商品的组合,其实用这个解题思路,也可以解决3件商品组合、4件商品组合的问题。
ETL开发实现接下去就是在观远BI平台上实现这个计算逻辑。 Step1:数据去重和过滤
Step2:计算两两商品组合的订单数。
Step3:关联得到商品A名称、商品A的订单数、商品B名称、商品B的订单数、总订单数。 分支1:
分支2:
最后保持并且运行ETL,我们就算出了4个基础指标:商品A的订单数、商品B的订单数、商品组合的订单数、总订单数。然后使用ETL输出的数据集新建卡片,计算商品组合的支持度、置信度、提升度,就可以得到我们想要分析结果啦! 看完了是不是想要马上试一试?也可以联系观远获得购物篮分析的Sample数据源和ETL程序文件哦。 |